A Dual of the Compression-Expansion Fixed Point Theorems
نویسندگان
چکیده
منابع مشابه
Fixed Point Theorems For Weak Contractions in Dualistic Partial Metric Spaces
In this paper, we describe some topological properties of dualistic partial metric spaces and establish some fixed point theorems for weak contraction mappings of rational type defined on dual partial metric spaces. These results are generalizations of some existing results in the literature. Moreover, we present examples to illustrate our result.
متن کاملFunctional Compression-expansion Fixed Point Theorem
This paper presents a generalization of the fixed point theorems of compression and expansion of functional type. As an application, the existence of a positive solution to a second order conjugate boundary value problem is considered. We conclude with an extension to multivalued maps.
متن کاملOn the fixed point theorems in generalized weakly contractive mappings on partial metric spaces
In this paper, we prove a fixed point theorem for a pair of generalized weakly contractive mappings in complete partial metric spaces. The theorems presented are generalizations of very recent fixed point theorems due to Abdeljawad, Karapinar and Tas. To emphasize the very general nature of these results, we illustrate an example.
متن کاملCritical fixed point theorems in Banach algebras under weak topology features
In this paper, we establish some new critical fixed point theorems for the sum $AB+C$ in a Banach algebra relative to the weak topology, where $frac{I-C}{A}$ allows to be noninvertible. In addition, a special class of Banach algebras will be considered.
متن کاملFixed Point Theorems for semi $lambda$-subadmissible Contractions in b-Metric spaces
Here, a new certain class of contractive mappings in the b-metric spaces is introduced. Some fixed point theorems are proved which generalize and modify the recent results in the literature. As an application, some results in the b-metric spaces endowed with a partial ordered are proved.
متن کامل